On the generalized Legendre transform and monopole metrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generalized Legendre transform and monopole metrics

In the generalized Legendre transform construction the Kähler potential is related to a particular function. Here, the form of this function appropriate to the k-monopole metric is calculated from the known twistor theory of monopoles.

متن کامل

Line Bundles on Spectral Curves and the Generalised Legendre Transform Construction of Hyperkähler Metrics

An analogue of the correspondence betweenGL(k)-conjugacy classes of matricial polynomials and line bundles is given for K-conjugacy classes, where K ⊂ GL(k) is one of the following: maximal parabolic, maximal torus, GL(k − 1) embedded diagonally. The generalised Legendre transform construction of hyperkähler metrics is studied further, showing that many known hyperkähler metrics (including the ...

متن کامل

The Legendre transform

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), x1, x2 ∈ C, 0 ≤ t ≤ 1, then f : X → R is convex. Proof. Let (x1, α1), (x2, α2) ∈ epi f and 0 ≤ t ≤ 1. The fact that the pairs (xi, αi) belong to epi f means in particular that f(xi) < ∞, and hence that xi ∈ C, as otherwise we would have f(xi) =∞. But (1− t)(x1, α1) + t(x2, α2) = ((1− t)x1 + tx2, (1− t)α1 + tα2), and, as x1, x2 ∈ C, f((1− t)x1 + tx2) ≤ (...

متن کامل

Recurrences and Legendre Transform

A binomial identity ((1) below), which relates the famous Apéry numbers and the sums of cubes of binomial coefficients (for which Franel has established a recurrence relation almost 100 years ago), can be seen as a particular instance of a Legendre transform between sequences. A proof of this identity can be based on the more general fact that the Apéry and Franel recurrence relations themselve...

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2000

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2000/02/042